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Abstract: We study gravitational perturbations of the Bonanno–Reuter quantum-
corrected black hole arising in the asymptotic safety scenario, focusing on QNMs and
grey-body factors. Assuming the RG parameter 𝜔̃ is fixed to its phenomenologically moti-
vated value, we treat the interpolation parameter 𝛾 as free and investigate how it modifies
the black hole’s response to axial gravitational perturbations. Quasinormal frequencies
are computed using the sixth-order WKB method with Padé approximants, and their
dependence on 𝛾 and the black hole mass 𝑀 is analyzed. We find that the Schwarzschild
limit is rapidly recovered for large 𝑀 or large 𝛾, while significant deviations arise in
the quantum regime. The accuracy of the WKB results is confirmed by time-domain
integration of the wave equation. Comparison of grey-body factors computed via both
the WKB method and the quasinormal mode correspondence are in a good concordance.
Our findings indicate that quantum corrections can leave significant imprints in the ring-
down and radiation spectra, while preserving consistency with classical results in the
appropriate limit.

Keywords: gravitation; quasinormal modes; black holes; grey-body factors; bonanno–reuter
black hole

1. Introduction

Quasinormal modes (QNMs) and grey-body factors are fundamental tools in the analysis of black hole
spacetimes. The QNMs characterize the damped oscillations of perturbations around black holes and dominate the
ringdown phase of gravitational wave signals [1–4]. Their frequencies depend solely on the background geometry
and the field content, making them powerful probes of gravitational dynamics and potential deviations from classical
general relativity. On the other hand, grey-body factors describe the frequency-dependent transmission probabilities
for quantum radiation escaping from black holes [5, 6], modifying the ideal blackbody spectrum predicted by
Hawking [7]. Together, these quantities encode both classical and semiclassical signatures of black holes and
provide complementary windows into the structure of spacetime near the event horizon. In the context of quantum
gravity proposals — such as asymptotic safety — it is of particular interest to understand how QNMs and grey-body
factors are affected by quantum corrections, as these deviations may offer observational handles on quantum effects
in strong-field regimes.

Understanding the interplay between quantum gravity effects and black hole physics is one of the most
fundamental challenges in modern theoretical physics. While the classical theory of general relativity predicts the
existence of singularities, quantum gravitational corrections are expected to modify the spacetime geometry at small
scales, potentially resolving or softening such singularities. In the asymptotic safety program, the gravitational
coupling becomes scale-dependent and runs with energy scale due to renormalization group (RG) effects [8]. This
leads to the concept of a “running Newton constant”, which, when incorporated into classical black hole solutions,
results in quantum-improved metrics that differ significantly from their classical counterparts in the near-horizon
and core regions.
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In this context, Bonanno and Reuter [9] proposed an effective Schwarzschild-like black hole metric derived by
improving the classical Schwarzschild solution using the RG flow of the Newton constant. Their model captures
essential features of asymptotic safety, including the emergence of a non-singular core for sub-Planckian masses and
the existence of a minimal mass remnant that halts complete evaporation. While previous works have studied scalar
and other test field perturbations in this background [10–13], the behavior of gravitational QNMs and grey-body
factors has remained unexplored.

In this work, we extend the study of the Bonanno–Reuter black hole by computing the gravitational quasi-
normal mode spectrum and the associated grey-body factors. We employ both the sixth-order WKB method
with Padé resummation and the time-domain integration method to extract the dominant modes and test their
consistency. Furthermore, we analyze the grey-body factors using both the WKB technique and the recently
proposed correspondence with QNMs. These results allow us to explore how the deviations from the classical
Schwarzschild black hole depend on the quantum correction parameter 𝛾 and the black hole mass 𝑀 . Our findings
demonstrate that the Schwarzschild limit is quickly recovered at large 𝑀 or large 𝛾, while significant deviations
appear in the quantum-dominated regime. The structure of the paper is as follows. In Section 2, we briefly review
the Bonanno–Reuter black hole and its underlying theoretical framework. In Section 3, we derive the effective
potential for axial gravitational perturbations. Section 4 presents the essentials of the WKB method and time-domain
approach as well as discusses features of the quasinormal spectrum. In Section 5, we analyze the grey-body factors,
examining their parametric dependencies and mutual consistency. We conclude with a discussion of the implications
of our results in Section 6.

2. Renormalization Group Improved Black Hole

The Bonanno–Reuter black hole arises from the renormalization group (RG) improvement of the classical
Schwarzschild solution in the context of asymptotically safe gravity [9]. In this approach, quantum gravitational
corrections are encoded in a scale-dependent Newton constant 𝐺(𝑘), where 𝑘 is an energy scale that depends on the
radial coordinate 𝑟. The effective Newton constant is modeled as

𝐺(𝑟) =
𝐺0𝑟

3

𝑟3 + 𝜔̃𝐺0(𝑟 + 𝛾𝐺0𝑀)
, (1)

where 𝐺0 is the infrared Newton constant, 𝜔̃ = 118/(15𝜋) is fixed by matching the RG-improved potential to
one-loop quantum corrections from effective field theory, and 𝛾 > 0 is an interpolation parameter determined by the
choice of cutoff identification.

Substituting this 𝐺(𝑟) into the Schwarzschild lapse function 𝑓(𝑟) = 1− 2𝐺(𝑟)𝑀/𝑟 yields the RG-improved metric:

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2𝑑Ω2, (2)

with the lapse function explicitly given by

𝑓(𝑟) = 1− 2𝐺0𝑀𝑟2

𝑟3 + 𝜔̃𝐺0(𝑟 + 𝛾𝐺0𝑀)
. (3)

This geometry exhibits several notable features:

• For large 𝑟, the function 𝑓(𝑟) approaches the classical Schwarzschild behavior with leading corrections of
order 1/𝑟3.

• For small 𝑟, the lapse function behaves as 𝑓(𝑟) ∼ 1− 𝑟2/𝑟20 , indicating a regular de Sitter core with effective
cosmological constant Λeff ∼ 1/𝑟20 .

• The metric may possess two, one, or no horizons depending on the mass 𝑀 and the parameter 𝛾. There exists
a critical mass 𝑀cr below which the black hole has no horizon, leading to a soliton-like remnant.

In this paper, we fix 𝜔̃ = 118/(15𝜋), and treat 𝛾 as a free parameter controlling the RG scale interpolation.
We study the gravitational quasinormal mode spectrum of this quantum-corrected geometry and compare the results
to classical expectations. The parametric range corresponding to the black hole configuration is shown in Figure 1.
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Figure 1. Parametric range allowing for existence of the event horizon in the 𝑀 -𝛾-plane.

3. Effective Potential for Gravitational Perturbations

The analysis of axial gravitational perturbations in quantum-corrected black hole spacetimes derived from
the Hamiltonian constraints approach is challenging, since the background metrics do not arise as exact solutions
of the Einstein field equations, but rather from effective modifications. A practical workaround, adopted in [14],
is to model quantum corrections as an effective anisotropic fluid within the classical general relativity framework.
This interpretation enables the use of standard perturbative techniques to derive wave-like equations governing
metric fluctuations.

In this setup, the background metric is assumed to take the form

𝑑𝑠2 = −𝑓(𝑟) 𝑑𝑡2 +
1

𝑔(𝑟)
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2), (4)

where 𝑓(𝑟) and 𝑔(𝑟) encode the quantum corrections to the geometry. The stress-energy tensor of the effective
anisotropic fluid is given by

𝑇𝜇𝜈 = (𝜌+ 𝑝𝑡)𝑢𝜇𝑢𝜈 + 𝑝𝑡𝑔𝜇𝜈 + (𝑝𝑟 − 𝑝𝑡)𝑠𝜇𝑠𝜈 , (5)

where 𝜌 is the energy density, 𝑝𝑟 and 𝑝𝑡 are the radial and tangential pressures respectively, 𝑢𝜇 is the fluid
four-velocity, and 𝑠𝜇 is the unit radial spacelike vector orthogonal to 𝑢𝜇. For the static background one has

𝑢𝜇 =

(︃
1√︀
𝑓(𝑟)

, 0, 0, 0

)︃
, 𝑠𝜇 =

(︁
0,
√︀
𝑔(𝑟), 0, 0

)︁
, (6)

satisfying the normalization conditions 𝑢𝜇𝑢
𝜇 = −1, 𝑠𝜇𝑠𝜇 = 1, and 𝑢𝜇𝑠

𝜇 = 0.
Focusing on axial perturbations in the Regge–Wheeler gauge [15], the perturbed metric takes the form

ℎaxial
𝜇𝜈 =

⎡⎢⎢⎣
0 0 0 ℎ0(𝑡, 𝑟) sin 𝜃 𝜕𝜃𝑃ℓ(cos 𝜃)

0 0 0 ℎ1(𝑡, 𝑟) sin 𝜃 𝜕𝜃𝑃ℓ(cos 𝜃)

0 0 0 0

ℎ0(𝑡, 𝑟) sin 𝜃 𝜕𝜃𝑃ℓ(cos 𝜃) ℎ1(𝑡, 𝑟) sin 𝜃 𝜕𝜃𝑃ℓ(cos 𝜃) 0 0

⎤⎥⎥⎦ , (7)

where 𝑃ℓ denotes the Legendre polynomial of degree ℓ. The axial sector is insensitive to scalar-type perturbations
of 𝜌, 𝑝𝑟, and 𝑝𝑡, which transform as scalars under rotations.

By following the steps outlined in [14], the Einstein equations lead to a system of equations for the perturbation
functions ℎ0(𝑡, 𝑟) and ℎ1(𝑡, 𝑟). After introducing a master variable Ψ(𝑡, 𝑟) defined by

ℎ1(𝑡, 𝑟) =
𝑟√︀

𝑓(𝑟)𝑔(𝑟)
Ψ(𝑡, 𝑟), (8)
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and switching to the tortoise coordinate 𝑟* defined by

𝑑𝑟*
𝑑𝑟

=
1√︀

𝑓(𝑟)𝑔(𝑟)
, (9)

one arrives at the wave-like equation
𝑑2Ψ

𝑑𝑟2*
+
[︀
𝜔2 − 𝑉 (𝑟)

]︀
Ψ = 0, (10)

with the effective potential for axial gravitational perturbations given by [14,16]

𝑉 (𝑟) = 𝑓(𝑟)

[︂
2𝑔(𝑟)

𝑟2
− (𝑓(𝑟)𝑔(𝑟))′

2𝑟𝑓(𝑟)
+

(ℓ+ 2)(ℓ− 1)

𝑟2

]︂
, (11)

where a prime denotes differentiation with respect to 𝑟.
This potential reduces to the standard Regge–Wheeler potential in the Schwarzschild limit 𝑓(𝑟) = 𝑔(𝑟) =

1−2𝑀/𝑟. For small deviations from Schwarzschild geometry, this expression reliably captures the leading quantum
corrections in the axial gravitational channel. The positivity of 𝑉 (𝑟) (see Figures 2 and 3) ensures linear stability of
the perturbations under the approximations made.
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Figure 2. Effective potentials for ℓ = 2 𝛾 = 0.1: 𝑀 = 1.66 (blue, top), 𝑀 = 2 (black, middle), 𝑀 = 10 (red,
bottom).
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Figure 3. Effective potentials for ℓ = 3 𝛾 = 0.1: 𝑀 = 1.66 (blue, top), 𝑀 = 2 (black, middle), 𝑀 = 10 (red,
bottom).

4. Quasinormal Modes

Quasinormal modes (QNMs) are characteristic oscillations of perturbed black holes, governed by linear field
equations subject to specific boundary conditions. They dominate the intermediate ringdown phase of a black hole’s
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response to perturbations and are determined entirely by the black hole’s geometry and the nature of the field. Their
complex frequencies encode both the oscillation frequency (real part) and decay rate (imaginary part), with stability
requiring Im(𝜔) < 0.

4.1. Boundary Conditions

For spherically symmetric, asymptotically flat black hole spacetimes of the form

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2𝑑Ω2, (12)

the perturbation equation typically reduces to a Schrödinger-like wave equation:

𝑑2Ψ

𝑑𝑟2*
+
[︀
𝜔2 − 𝑉 (𝑟)

]︀
Ψ = 0, (13)

where 𝑟* is the tortoise coordinate defined by 𝑑𝑟*/𝑑𝑟 = 1/𝑓(𝑟), and 𝑉 (𝑟) is the effective potential depending on
the spin of the perturbing field.

The quasinormal boundary conditions require purely ingoing waves at the event horizon and purely outgoing
waves at spatial infinity:

Ψ(𝑟*) ∼

{︃
𝑒−𝑖𝜔𝑟* , 𝑟* → −∞ (𝑟 → 𝑟+),

𝑒+𝑖𝜔𝑟* , 𝑟* → +∞ (𝑟 → ∞).
(14)

4.2. WKB Method with Padé Approximants

One of the most effective semi-analytic methods for computing quasinormal frequencies is the Wentzel–Kramers
–Brillouin (WKB) approximation, originally developed for quantum tunneling problems and adapted for black hole
perturbations in [17,18]. The WKB formula up to N-th order can be written as [19,20]:

𝑖𝑄0√︀
2𝑄′′

0

−
𝑁∑︁
𝑗=2

Λ𝑗 = 𝑛+
1

2
, 𝑛 = 0, 1, 2, . . . , (15)

where 𝑄 = 𝜔2 − 𝑉 (𝑟) is expanded around the peak of the potential, 𝑄0 = 𝑄(𝑟max), 𝑄′′
0 is the second derivative

with respect to 𝑟* at the peak, and Λ𝑗 are higher-order correction terms [18–20].
To improve convergence and accuracy, especially for low multipole numbers, Padé approximants were

introduced in [20]. The WKB series is recast as a rational function:

WKB-Padé(𝑚, 𝑝) =
𝑃𝑚(𝑥)

𝑄𝑝(𝑥)
, (16)

where the Padé approximant of order (𝑚, 𝑝) matches the WKB expansion up to order 𝑚 + 𝑝. This technique
significantly enhances precision and often yields results close to those obtained by numerical integration [21–24].

4.3. Time-Domain Integration

An alternative and fully numerical method for extracting QNMs is time-domain integration, particularly
well-suited for studying stability and late-time behavior. In this approach, the wave equation is discretized using
light-cone coordinates 𝑢 = 𝑡− 𝑟*, 𝑣 = 𝑡+ 𝑟*, and evolved iteratively via the characteristic integration scheme [25]:

Ψ(𝑁) = Ψ(𝑊 ) + Ψ(𝐸)−Ψ(𝑆)− ∆2

8
𝑉 (𝑆) [Ψ(𝑊 ) + Ψ(𝐸)] , (17)

where 𝑁 , 𝑆, 𝐸, and 𝑊 denote points on a grid and ∆ is the step size. By specifying appropriate initial data (e.g., a
Gaussian pulse), one can monitor the evolution of the field and extract dominant frequencies using fitting techniques
such as the Prony method or filtered Fourier transform.

4.4. Discussion of Numerical Results

In this work, we employ both the WKB method with Padé approximants and the time-domain integration
to ensure the reliability of our quasinormal mode results and to explore the behavior of perturbations in the
Bonanno–Reuter black hole geometry.
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The quasinormal mode spectra calculated using the sixth-order WKB method with Padé approximants reveal a
consistent and smooth dependence on both the black hole mass 𝑀 and the quantum gravity interpolation parameter
𝛾. For fixed 𝛾, increasing 𝑀 results in both the real and imaginary parts of the fundamental quasinormal frequencies
approaching their classical Schwarzschild values (see Tables 1–4). This is consistent with the fact that for large 𝑀 ,
the RG corrections become subleading, and the geometry becomes effectively classical.

Table 1. QNMs (𝑛 = 0) of the gravitational perturbations of the Bonanno-Reuter black hole, 𝛾 = 0.1, calculated
using the WKB approach at the 6th and 7th order together with the difference between them.

ℓ 𝑀 WKB-6, 𝑚 = 3 WKB-7, 𝑚 = 3 𝛿(%)

2 1.66 0.263295− 0.042414𝑖 0.263300− 0.042430𝑖 0.0061%

2 1.8 0.235360− 0.042547𝑖 0.235363− 0.042563𝑖 0.0066%

2 2. 0.205631− 0.040400𝑖 0.205638− 0.040396𝑖 0.0037%

2 2.5 0.158207− 0.033963𝑖 0.158176− 0.033962𝑖 0.0194%

2 3. 0.129398− 0.028806𝑖 0.129394− 0.028810𝑖 0.0045%

2 3.5 0.109725− 0.024912𝑖 0.109728− 0.024919𝑖 0.0064%

2 4. 0.095368− 0.021915𝑖 0.095373− 0.021918𝑖 0.0055%

2 5. 0.075714− 0.017632𝑖 0.075717− 0.017628𝑖 0.0063%

2 10. 0.037484− 0.008874𝑖 0.037484− 0.008875𝑖 0.002%

3 1.66 0.420450− 0.044482𝑖 0.420450− 0.044482𝑖 0.00014%

3 1.8 0.375766− 0.044546𝑖 0.375766− 0.044545𝑖 0.00007%

3 2. 0.328538− 0.042225𝑖 0.328538− 0.042224𝑖 0.0002%

3 2.5 0.253123− 0.035433𝑖 0.253124− 0.035433𝑖 0.0001%

3 3. 0.207181− 0.030050𝑖 0.207181− 0.030049𝑖 0%

3 3.5 0.175787− 0.025983𝑖 0.175787− 0.025983𝑖 0%

3 4. 0.152837− 0.022851𝑖 0.152837− 0.022852𝑖 0%

3 5. 0.121384− 0.018382𝑖 0.121384− 0.018382𝑖 0%

3 10. 0.060127− 0.009252𝑖 0.060127− 0.009252𝑖 0%

Table 2. QNMs (𝑛 = 0) of the gravitational perturbations the Bonanno-Reuter black hole, 𝛾 = 1, calculated using
the WKB approach at the 6th and 7th order together with the difference between them.

ℓ 𝑀 WKB-6, 𝑚 = 3 WKB-7, 𝑚 = 3 𝛿(%)

2 2.19 0.190298− 0.033193𝑖 0.190304− 0.033216𝑖 0.0120%

2 2.25 0.183920− 0.033124𝑖 0.183928− 0.033142𝑖 0.0103%

2 2.5 0.161737− 0.031754𝑖 0.161737− 0.031752𝑖 0.0009%

2 3. 0.131172− 0.027868𝑖 0.131145− 0.027837𝑖 0.0309%

2 3.5 0.110786− 0.024389𝑖 0.110786− 0.024372𝑖 0.0155%

2 4. 0.096036− 0.021585𝑖 0.096039− 0.021595𝑖 0.0104%

2 4.5 0.084844− 0.019328𝑖 0.084848− 0.019335𝑖 0.0087%

2 5. 0.076034− 0.017481𝑖 0.076039− 0.017485𝑖 0.0073%

2 10. 0.037522− 0.008858𝑖 0.037522− 0.008858𝑖 0.002%

3 2.19 0.304323− 0.034901𝑖 0.304323− 0.034901𝑖 0%

3 2.25 0.294033− 0.034804𝑖 0.294034− 0.034804𝑖 0.0002%

3 2.5 0.258559− 0.033262𝑖 0.258559− 0.033262𝑖 0.00017%

3 3. 0.209860− 0.029103𝑖 0.209860− 0.029102𝑖 0.0002%

3 3.5 0.177334− 0.025467𝑖 0.177334− 0.025467𝑖 0%

3 4. 0.153820− 0.022534𝑖 0.153820− 0.022534𝑖 0%

3 4.5 0.135944− 0.020168𝑖 0.135944− 0.020168𝑖 0%

3 5. 0.121858− 0.018234𝑖 0.121858− 0.018234𝑖 0.0001%

3 10. 0.060182− 0.009235𝑖 0.060182− 0.009235𝑖 0%
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Table 3. QNMs (𝑛 = 0) of the gravitational perturbations the Bonanno-Reuter black hole, 𝛾 = 9/2, calculated
using the WKB approach at the 6th and 7th order together with the difference between them.

ℓ 𝑀 WKB-6, 𝑚 = 3 WKB-7, 𝑚 = 3 𝛿(%)

2 3.5 0.110786− 0.024389𝑖 0.110786− 0.024372𝑖 0.0155%

2 3.6 0.107470− 0.023775𝑖 0.107470− 0.023774𝑖 0.0007%

2 3.7 0.104354− 0.023190𝑖 0.104354− 0.023196𝑖 0.0061%

2 3.8 0.101420− 0.022631𝑖 0.101421− 0.022640𝑖 0.0091%

2 3.9 0.098652− 0.022097𝑖 0.098654− 0.022107𝑖 0.0102%

2 4. 0.096036− 0.021585𝑖 0.096039− 0.021595𝑖 0.0104%

2 4.5 0.084844− 0.019328𝑖 0.084848− 0.019335𝑖 0.0087%

2 5. 0.076034− 0.017481𝑖 0.076039− 0.017485𝑖 0.0073%

2 10. 0.037522− 0.008858𝑖 0.037522− 0.008858𝑖 0.002%

3 3.5 0.177334− 0.025467𝑖 0.177334− 0.025467𝑖 0%

3 3.6 0.172051− 0.024828𝑖 0.172051− 0.024828𝑖 0%

3 3.7 0.167085− 0.024216𝑖 0.167085− 0.024216𝑖 0%

3 3.8 0.162408− 0.023631𝑖 0.162408− 0.023631𝑖 0%

3 3.9 0.157993− 0.023071𝑖 0.157993− 0.023071𝑖 0%

3 4. 0.153820− 0.022534𝑖 0.153820− 0.022534𝑖 0%

3 4.5 0.135944− 0.020168𝑖 0.135944− 0.020168𝑖 0%

3 5. 0.121858− 0.018234𝑖 0.121858− 0.018234𝑖 0.0001%

3 10. 0.060182− 0.009235𝑖 0.060182− 0.009235𝑖 0%

Table 4. QNMs (𝑛 = 1) of the gravitational perturbations the Bonanno-Reuter black hole, 𝛾 = 9/2, calculated
using the WKB approach at the 6th and 7th order together with the difference between them.

ℓ 𝑀 WKB-6, 𝑚 = 3 WKB-7, 𝑚 = 3 𝛿(%)

2 3.5 0.104567− 0.074770𝑖 0.104746− 0.074581𝑖 0.202%

2 3.6 0.101353− 0.072894𝑖 0.101432− 0.072777𝑖 0.113%

2 3.7 0.098333− 0.071100𝑖 0.098363− 0.071040𝑖 0.0557%

2 3.8 0.095491− 0.069386𝑖 0.095497− 0.069368𝑖 0.0158%

2 3.9 0.092812− 0.067746𝑖 0.092808− 0.067761𝑖 0.0136%

2 4. 0.090283− 0.066178𝑖 0.090277− 0.066217𝑖 0.0360%

2 4.5 0.079507− 0.059269𝑖 0.079521− 0.059362𝑖 0.0952%

2 5. 0.071086− 0.053622𝑖 0.071125− 0.053720𝑖 0.118%

2 10. 0.034827− 0.027228𝑖 0.034863− 0.027232𝑖 0.082%

3 3.5 0.173288− 0.077127𝑖 0.173290− 0.077120𝑖 0.0039%

3 3.6 0.168080− 0.075202𝑖 0.168082− 0.075195𝑖 0.0037%

3 3.7 0.163188− 0.073358𝑖 0.163189− 0.073352𝑖 0.0035%

3 3.8 0.158582− 0.071593𝑖 0.158583− 0.071587𝑖 0.0033%

3 3.9 0.154238− 0.069902𝑖 0.154239− 0.069897𝑖 0.0031%

3 4. 0.150133− 0.068283𝑖 0.150134− 0.068278𝑖 0.0029%

3 4.5 0.132573− 0.061134𝑖 0.132573− 0.061131𝑖 0.0020%

3 5. 0.118763− 0.055283𝑖 0.118763− 0.055282𝑖 0.0013%

3 10. 0.058535− 0.028017𝑖 0.058535− 0.028018𝑖 0.0008%

Similarly, for fixed 𝑀 , increasing 𝛾 tends to suppress the deviation from the classical limit, reinforcing the
interpretation of 𝛾 as controlling the scale at which quantum effects become significant. In particular, values of
𝛾 ≳ 5 already lead to frequencies indistinguishable (within numerical error) from Schwarzschild for 𝑀 ≳ 5. This
trend supports the idea that the Bonanno–Reuter black hole smoothly interpolates between quantum-corrected and
classical behavior depending on the choice of parameters. As shown in Figures 4 and 5, the quantum corrected black
hole of the same mass as its classical counterpart has longer lived modes with slightly smaller oscillations rate.
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Figure 4. Real and imaginary part of the dominant (𝑛 = 0) QNMs of the ℓ = 2 gravitational perturbations for the
Bonanno-Reuter black hole calculated by WKB6Pade3 as functions of 𝑀 , 𝛾 = 0.01 (blue), 𝛾 = 1 (red), 𝛾 = 9/2

(black), 𝛾 = 10 (green).
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Figure 5. Real and imaginary part of the dominant (𝑛 = 0) QNMs of the ℓ = 3 gravitational perturbations for the
Bonanno-Reuter black hole calculated by WKB6Pade3 as functions of 𝑀 , 𝛾 = 0.01 (blue), 𝛾 = 1 (red), 𝛾 = 9/2

(black), 𝛾 = 10 (green).

The WKB method with Padé approximants of order 𝑚 = 3 produces consistent results across different
multipoles and parameter values. As seen in Tables 1–4, the relative errors between sixth- and seventh-order WKB
calculations are typically 𝛿 ≲ 0.01%, which is one to two orders of magnitude smaller than the deviations from
Schwarzschild frequencies. This confirms the robustness of the results and ensures that the observed deviations are
genuine physical effects rather than numerical artifacts. As shown in Figure 6, the frequency extracted from the
time-domain profile using the Prony method matches the sixth-order WKB result to within <0.005%, reinforcing
the reliability of the WKB approach for moderate ℓ.

100 200 300 400 500
t

10
-10

10
-8

10
-6

10
-4

0.01

1

ÈYÈ

Figure 6. Time-domain profile for ℓ = 2 𝛾 = 0.1: 𝑀 = 1.66. The Prony method gives 𝜔 = 0.263305−0.042429𝑖,
while the WKB data is 𝜔 = 0.263295− 0.042414𝑖.

5. Grey-Body Factors

In the semiclassical picture of Hawking radiation, black holes emit particles with a thermal spectrum at a
temperature determined by the surface gravity at the horizon. However, the actual radiation observed at infinity
deviates from perfect blackbody behavior due to the backscattering of waves by the spacetime curvature outside
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the horizon. This leads to the introduction of grey-body factors, which act as frequency-dependent transmission
coefficients modulating the emitted radiation spectrum.

Unlike QNMs, for which both boundaries are radiative (ingoing at the horizon and outgoing at infinity), the
setup for grey-body factors corresponds to a scattering problem:

Ψ(𝑟*) ∼

{︃
𝒯 𝑒−𝑖𝜔𝑟* , 𝑟* → −∞ (𝑟 → 𝑟+),

𝑒−𝑖𝜔𝑟* +ℛ𝑒𝑖𝜔𝑟* , 𝑟* → +∞ (𝑟 → ∞),
(18)

where ℛ and 𝒯 are the reflection and transmission coefficients, respectively. The grey-body factor is defined as the
modulus squared of the transmission coefficient:

Γℓ(𝜔) = |𝒯 |2, (19)

which physically represents the probability that a wave of frequency 𝜔 and angular momentum ℓ escapes to infinity.
Grey-body factors can be computed semi-analytically using the WKB method [17,18,26], especially in the

regime where the effective potential has a single well-defined barrier. The WKB transmission coefficient at a given
order yields:

Γℓ(𝜔) =
(︀
1 + 𝑒2𝜋𝐾

)︀−1
, (20)

where 𝐾 is a WKB quantity defined by:

𝐾 =
𝑖(𝜔2 − 𝑉0)√︀

−2𝑉 ′′
0

+ · · · , (21)

with 𝑉0 and 𝑉 ′′
0 being the value and second derivative of the effective potential at its maximum, respectively. Higher-

order corrections can be included, and as in the case of QNMs, Padé resummation should improve convergence and
numerical accuracy [20]. This method is particularly reliable for frequencies near the peak of the potential, and
especially when ℓ is large. Here we used the 6th order WKB formula [19] as usually it provides the best accuracy.

An alternative and increasingly explored approach relies on the recently proposed correspondence between
grey-body factors and the fundamental quasinormal mode in the eikonal regime [27]. In this framework, the
grey-body factor is approximately expressed as:

Γℓ(𝜔) ≈
[︂
1 + exp

(︂
2𝜋(𝜔2 − Re[𝜔0]

2)

4Re[𝜔0] |Im[𝜔0]|

)︂]︂−1

+𝒪(ℓ−1), (22)

where 𝜔0 is the least damped quasinormal frequency for a given multipole number ℓ. This approximation has been
shown to be remarkably accurate for large ℓ, and even for moderate values when higher-order corrections in the
overtone number are included [28–34].

In this work, we compute the grey-body factors for gravitational perturbations in the Bonanno–Reuter black
hole background using both methods. Their agreement offers a valuable cross-check and enhances our understanding
of wave propagation in quantum-corrected spacetimes.

The behavior of grey-body factors in the Bonanno–Reuter geometry mirrors the features of the effective
potential, particularly its height and width, which influence the transmission probability of gravitational waves
through the curvature barrier. Although here the full profile of the potential is only presented for varying mass
at fixed 𝛾, it can be inferred that increasing 𝑀 lowers and widens the potential peak, thereby enhancing the
transmission probability and raising the grey-body factors for a fixed frequency 𝜔.

This interpretation is consistent with the computed grey-body factors shown in Figures 7 and 8. At fixed ℓ,
increasing 𝑀 generally leads to a higher transmission coefficient. The impact of varying 𝛾 is somewhat subtler but
can be traced to the way it affects the near-horizon structure of the metric and thus shifts the effective potential.
Notably, the dependence of grey-body factors on 𝛾 is more pronounced at low 𝑀 , where quantum corrections are
strongest. When mass is fixed, larger 𝛾 corresponds to higher effective potential and smaller grey-body factors, as
shown in Figures 7 and 8.
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Figure 7. Grey-body factors for ℓ = 2 case calculated via the 6th order method and with the help of the correspon-
dence with QNMs (left) and the difference between the results obtained by the two methods (right): 𝛾 = 0.01 (blue),
𝛾 = 9/2 (red), 𝛾 = 10 (black).
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Figure 8. Grey-body factors for ℓ = 3 case calculated via the 6th order method and with the help of the correspon-
dence with QNMs (left) and the difference between the results obtained by the two methods (right): 𝛾 = 0.01 (blue),
𝛾 = 9/2 (red), 𝛾 = 10 (black).

Moreover, the comparison between grey-body factors obtained via the WKB method and those predicted by
the QNM–grey-body correspondence (equation (23)) confirms the reliability of both methods. The agreement is
excellent for ℓ = 3, and even for ℓ = 2, the discrepancy is below 1% across most frequencies, validating the use of
the eikonal-mode approximation even in moderately low ℓ regimes. These results provide additional evidence for
the utility of QNMs as probes of black hole spacetimes beyond classical general relativity.

6. Conclusions

In this work, we have computed and analyzed the gravitational QNMs and grey-body factors of the Bonanno–
Reuter regular black hole—a quantum-corrected geometry emerging from the asymptotic safety program. By fixing
the RG parameter 𝜔̃ and varying the interpolation parameter 𝛾, we have explored how quantum modifications affect
the observable signatures of black holes.

Our results demonstrate that both the real and imaginary parts of quasinormal frequencies smoothly converge
to their classical Schwarzschild limits for large masses or large values of 𝛾. This confirms that the classical regime
is recovered in the appropriate limit and validates the consistency of the RG-improved metric. Furthermore, the
calculated grey-body factors exhibit a corresponding behavior, with quantum corrections modifying the transmission
spectrum in a predictable manner based on the deformation of the effective potential. The quantum corrected black
holes of the same mass as the Schwarzschild one have longer lived QNMs and smaller grey-body factors.

Importantly, the accuracy of the WKB method with Padé resummation is sufficient to resolve even subtle
quantum-induced deviations from the Schwarzschild case, and the consistency with QNM–grey-body correspon-
dence further strengthens the reliability of the findings.

It is worth noting that QNMs and grey-body factors have also been studied for several other black hole models
within the framework of Asymptotically Safe Gravity [32,35–37].

Altogether, our study provides a systematic understanding of how quantum gravity corrections within asymp-
totic safety may influence gravitational wave observables. This offers a valuable benchmark for future studies
involving time-domain evolution, stability analysis, or potential observational constraints.
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