Downloads
Download

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stroke is believed to be the most common cause of permanent disability and is regarded as the second major cause of death. Within minutes of onset, cerebral ischemia triggers a cascade of pathophysiological events that ultimately result in irreversible tissue damage. Post-ischemic inflammation plays a critical role in cerebral ischemia-reperfusion injury, characterized by the elevated release of cytokines and chemokines. Interleukin (IL)-32 is known to induce several cytokines, particularly pro-inflammatory ones such as IL-6, tumor necrosis factor (TNF)α, and IL-1β. Targeting inflammatory pathways are of great interest in stroke research. In this study, we investigated the role of IL-32γ in a middle cerebral artery occlusion (MCAO) model using transgenic (TG) mice expressing human IL-32γ. Compared to wild-type (WT) mice, IL-32γ TG mice exhibited a significantly reduced infarct volume after MCAO. Accompanying the decreased brain tissue damage, the levels of pro-inflammatory cytokines IL-6, TNFα, and IL-1β were markedly lower in IL-32γ TG mice than in WT controls. These findings suggest that IL-32γ modulates the inflammatory response in ischemic brain injury. Specifically, IL-32γ reduced the expression of pro-inflammatory cytokines and the number of apoptotic cells following ischemic insult. In conclusion, our results demonstrate that IL-32γ regulates the neuroinflammatory response in brain injury and may serve as a potential neuroprotective therapeutic target.
Keywords:
Stroke IL-32γ proinflammatory cytokine IL-32γ TG middle cerebral artery occlusion.References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. https://doi.org/10.1161/CIR.0000000000000950.
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. https://doi.org/10.1055/s-0038-1649503.
- Sveinsson, O.A.; Kjartansson, O.; Valdimarsson, E.M. Cerebral ischemia/infarction—Epidemiology, causes and symptoms. Laeknabladid 2014, 100, 271–279. https://doi.org/10.17992/lbl.2014.05.543.
- Orellana-Urzua, S.; Rojas, I.; Libano, L.; Rodrigo, R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr. Pharm. Des. 2020, 26, 4246–4260. https://doi.org/10.2174/1381612826666200708133912.
- Huang, J.; Upadhyay, U.M.; Tamargo, R.J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006, 66, 232–245. https://doi.org/10.1016/j.surneu.2005.12.028.
- Shi, K.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol. 2019, 18, 1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X.
- Jin, R.; Liu, L.; Zhang, S.; Nanda, A.; Li, G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013, 6, 834–851. https://doi.org/10.1007/s12265-013-9508-6.
- Kim, E.; Cho, S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics 2016, 13, 702–718. https://doi.org/10.1007/s13311-016-0463-1.
- Drieu, A.; Buendia, I.; Levard, D.; Helie, P.; Brodin, C.; Vivien, D.; Rubio, M. Immune Responses and Anti-inflammatory Strategies in a Clinically Relevant Model of Thromboembolic Ischemic Stroke with Reperfusion. Transl. Stroke Res. 2020, 11, 481–495. https://doi.org/10.1007/s12975-019-00733-8.
- Drieu, A.; Levard, D.; Vivien, D.; Rubio, M. Anti-inflammatory treatments for stroke: From bench to bedside. Ther. Adv. Neurol. Disord. 2018, 11. https://doi.org/10.1177/1756286418789854.
- Heinz, R.; Brandenburg, S.; Nieminen-Kelha, M.; Kremenetskaia, I.; Boehm-Sturm, P.; Vajkoczy, P.; Schneider, U.C. Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J. Neuroinflamm. 2021, 18, 36. https://doi.org/10.1186/s12974-021-02085-3.
- Choi, J.; Bae, S.; Hong, J.; Ryoo, S.; Jhun, H.; Hong, K.; Yoon, D.; Lee, S.; Her, E.; Choi, W.; et al. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proc. Natl. Acad. Sci. USA 2010, 107, 21082–21086. https://doi.org/10.1073/pnas.1015418107.
- Joosten, L.A.; Netea, M.G.; Kim, S.H.; Yoon, D.Y.; Oppers-Walgreen, B.; Radstake, T.R.; Barrera, P.; van de Loo, F.A.; Dinarello, C.A.; van den Berg, W.B. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2006, 103, 3298–3303.
- Shioya, M.; Nishida, A.; Yagi, Y.; Ogawa, A.; Tsujikawa, T.; Kim-Mitsuyama, S.; Takayanagi, A.; Shimizu, N.; Fujiyama, Y.; Andoh, A. Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin. Exp. Immunol. 2007, 149, 480–486. https://doi.org/10.1111/j.1365-2249.2007.03439.x.
- Calabrese, F.; Baraldo, S.; Bazzan, E.; Lunardi, F.; Rea, F.; Maestrelli, P.; Turato, G.; Lokar-Oliani, K.; Papi, A.; Zuin, R.; et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 894–901. https://doi.org/10.1164/rccm.200804-646OC.
- Dinarello, C.A.; Kim, S.H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 2006, 65 (Suppl. 3), 61–64.
- Hong, J.T.; Son, D.J.; Lee, C.K.; Yoon, D.Y.; Lee, D.H.; Park, M.H. Interleukin 32, inflammation and cancer. Pharmacol. Ther. 2017, 174, 127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025.
- Gong, L.; Dong, C.; Cai, Q.; Ouyang, W. Interleukin 32: A novel player in perioperative neurocognitive disorders. Med. Hypotheses. 2020, 144, 110158. https://doi.org/10.1016/j.mehy.2020.110158.
- Safari-Alighiarloo, N.; Taghizadeh, M.; Mohammad Tabatabaei, S.; Namaki, S.; Rezaei-Tavirani, M. Identification of common key genes and pathways between type 1 diabetes and multiple sclerosis using transcriptome and interactome analysis. Endocrine 2020, 68, 81–92. https://doi.org/10.1007/s12020-019-02181-8.
- Hamzaoui, K.; Borhani-Haghighi, A.; Dhifallah, I.B.; Hamzaoui, A. Elevated levels of IL-32 in cerebrospinal fluid of neuro-Behcet disease: Correlation with NLRP3 inflammasome. J. Neuroimmunol. 2022, 365, 577820. https://doi.org/10.1016/j.jneuroim.2022.577820.
- Cho, K.S.; Park, S.H.; Joo, S.H.; Kim, S.H.; Shin, C.Y. The effects of IL-32 on the inflammatory activation of cultured rat primary astrocytes. Biochem. Biophys. Res. Commun. 2010, 402, 48–53. https://doi.org/10.1016/j.bbrc.2010.09.099.
- Sohn, D.H.; Nguyen, T.T.; Kim, S.; Shim, S.; Lee, S.; Lee, Y.; Jhun, H.; Azam, T.; Kim, J.; Kim, S. Structural Characteristics of Seven IL-32 Variants. Immune Netw. 2019, 19, e8.
- Kim, S.; Yu, H.; Azam, T.; Dinarello, C.A. Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application. Immune Netw. 2024, 24, e1.
- Hua, F.; Ma, J.; Ha, T.; Kelley, J.; Williams, D.L.; Kao, R.L.; Kalbfleisch, J.H.; Browder, I.W.; Li, C. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J. Neuroimmunol. 2008, 199, 75–82. https://doi.org/10.1016/j.jneuroim.2008.05.009.
- Chen, Y.; Ito, A.; Takai, K.; Saito, N. Blocking pterygopalatine arterial blood flow decreases infarct volume variability in a mouse model of intraluminal suture middle cerebral artery occlusion. J. Neurosci. Methods 2008, 174, 18–24. https://doi.org/10.1016/j.jneumeth.2008.06.021.
- Reglodi, D.; Tamas, A.; Somogyvari-Vigh, A.; Szanto, Z.; Kertes, E.; Lenard, L.; Arimura, A.; Lengvari, I. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 2002, 23, 2227–2234.
- Hatcher, J.P.; Virley, D.; Hadingham, S.J.; Roberts, J.; Hunter, A.J.; Parsons, A.A. The behavioural effect of middle cerebral artery occlusion on apolipoprotein-E deficient mice. Behav. Brain Res. 2002, 131, 139–149.
- Nurmi, A.; Lindsberg, P.J.; Koistinaho, M.; Zhang, W.; Juettler, E.; Karjalainen-Lindsberg, M.L.; Weih, F.; Frank, N.; Schwaninger, M.; Koistinaho, J. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 2004, 35, 987–991. https://doi.org/10.1161/01.STR.0000120732.45951.26.
- Howell, J.A.; Bidwell, G.L., 3rd. Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther. Deliv. 2020, 11, 113–123. https://doi.org/10.4155/tde-2019-0075.
- Ginsberg, M.D.; Busto, R. Rodent models of cerebral ischemia. Stroke 1989, 20, 1627–1642. https://doi.org/10.1161/01.str.20.12.1627.
- Kim, S.H.; Han, S.Y.; Azam, T.; Yoon, D.Y.; Dinarello, C.A. Interleukin-32: A cytokine and inducer of TNFalpha. Immunity 2005, 22, 131–142.
- Aass, K.R.; Kastnes, M.H.; Standal, T. Molecular interactions and functions of IL-32. J. Leukoc. Biol. 2021, 109, 143–159. https://doi.org/10.1002/JLB.3MR0620-550R.
- Park, H.M.; Park, J.Y.; Kim, N.Y.; Kim, H.; Kim, H.G.; Son, D.J.; Hong, J.T.; Yoon, D.Y. Recombinant Human IL-32theta Induces Polarization Into M1-like Macrophage in Human Monocytic Cells. Immune Netw. 2024, 24, e27. https://doi.org/10.4110/in.2024.24.e27.
- Lee, Y.S.; Han, S.B.; Ham, H.J.; Park, J.H.; Lee, J.S.; Hwang, D.Y.; Jung, Y.S.; Yoon, D.Y.; Hong, J.T. IL-32gamma suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J. Allergy Clin. Immunol. 2020, 146, 156–168. https://doi.org/10.1016/j.jaci.2019.12.905.
- Nam, S.Y.; Kim, H.M.; Jeong, H.J. Attenuation of IL-32-induced caspase-1 and nuclear factor-kappaB activations by acteoside. Int. Immunopharmacol. 2015, 29, 574–582. https://doi.org/10.1016/j.intimp.2015.09.026.
- Al-Shobaili, H.A.; Farhan, J.; Zafar, U.; Rasheed, Z. Functional role of human interleukin-32 and nuclear transcription factor-kB in patients with psoriasis and psoriatic arthritis. Int. J. Health Sci. 2018, 12, 29–34.
- Lin, J.; Xu, R.; Hu, L.; You, J.; Jiang, N.; Li, C.; Che, C.; Wang, Q.; Xu, Q.; Li, J.; et al. Interleukin-32 induced thymic stromal lymphopoietin plays a critical role in the inflammatory response in human corneal epithelium. Cell. Signal. 2018, 49, 39–45. https://doi.org/10.1016/j.cellsig.2018.05.007.
- Cao, H.; Pan, X.F.; Zhang, K.; Shu, X.; Li, G. Interleukin-32 expression is induced by hepatitis B virus. Zhonghua Gan Zang Bing Za Zhi 2013, 21, 442–445. https://doi.org/10.3760/cma.j.issn.1007-3418.2013.06.014.
- Hwang, C.J.; Yun, H.M.; Jung, Y.Y.; Lee, D.H.; Yoon, N.Y.; Seo, H.O.; Han, J.Y.; Oh, K.W.; Choi, D.Y.; Han, S.B.; et al. Reducing effect of IL-32alpha in the development of stroke through blocking of NF-kappaB, but enhancement of STAT3 pathways. Mol. Neurobiol. 2015, 51, 648–660. https://doi.org/10.1007/s12035-014-8739-0.
- Yun, H.M.; Kim, J.A.; Hwang, C.J.; Jin, P.; Baek, M.K.; Lee, J.M.; Hong, J.E.; Lee, S.M.; Han, S.B.; Oh, K.W.; et al. Neuroinflammatory and Amyloidogenic Activities of IL-32beta in Alzheimer’s Disease. Mol. Neurobiol. 2015, 52, 341–352. https://doi.org/10.1007/s12035-014-8860-0.
- Yin, H.; Wu, M.; Jia, Y. Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-kappaB pathway. Metab. Brain Dis. 2020, 35, 363–371. https://doi.org/10.1007/s11011-019-00530-0.
- Liu, C.; Xu, X.; Huang, C.; Shang, D.; Zhang, L.; Wang, Y. Inhibition of IL-32 Expression Ameliorates Cerebral Ischemia-Reperfusion Injury via the NOD/MAPK/NF-kappaB Signaling Pathway. J. Mol. Neurosci. 2020, 70, 1713–1727. https://doi.org/10.1007/s12031-020-01557-0.



